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VTM NSS COLLEGE, DHANUVACHAPURAM
DEPARTMENT OF MATHEMATICS

QUESTION BANK : SEMESTER 3 (MATHS FOR PHYSICS)

LINEAR ALGEBRA,SPECIAL FUNCTIONS AND CALCULUS

2 MARKS

Show that if A is a square matrix (i)A+A’ is Symmetric
a. A-A’ is Skew Symmetric

2 00
Find the sum and product of eigen values of the matrix [1 2 0]
0 0 3
. 1 -1 3 1.
If A and B are matrices such that A+B—[3 0 ] and A-B-[1 4].Fmd A and B.
1 2 3
Find the rank of the matrix (1 4 2
2 6 5
State Cayley-Hamilton theorem and find the characteristic equation of [g ;]

Find the eigen value of the matrix [3 _02]

Show that for any square matrix A, A and A’ have the same eigen values.

If A=(; g) show that A2 — 44 — 5[ = 0.
1 2 3
Find the rank of the matrix [1 4 2]
2 6 5
3 1 4
Find the sum and product of eigen values of the matrix [0 2 6]
0 0 5
. .12 4 6
Find the rank of the matrix [4 3 12].
1 -5 2
Evaluate the determinant |7 3  4].
2 1 5
2 -3 5 3
Find the rank of the matix [4 -1 1 1].
3 -2 3 4
If A and B are matrices such that A+B=[§ _01] and A—B:[i ﬂ,ﬂnd A and B.

2
Show that x=a Cosnt is a solution of the differential equation sz +n2x=0
Solve y'=-y/x,given y(1)=1

d _ _
Solve£= e3X72Y 4 x2e72%Y
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4y

Find an integrating factor of the differential equation (X+1)E — y=e3¥(x+1)?

Write the order and degree of the differential equation (—)3+ 2y ( Tz

Check whether the differential equation (y cosx +1)dx + sinx dy = 0 is exact

Solve + 13 +36y 0
Write the general form of Cauchy’s homogeneous linear equation
Find the Wronskian of e* and e ™*

Solve e3X2Y4y202y

Transform the differential equation x +3x— +y = into linear equation with

a 96)2
constant coefficients
Find the divergence of V = xyz | +3x%y j +(xz%-y?z)k at the point (2,-1,1)

Evaluate fc (1+xy?)dswherec:r(t)=ti+2tj, 0<t <1

Find ff (x*+y® +z*)ds, where o is the sphere of radius 2 centred at the origin

Using divergence theorem, find the outward flux of the vector field F(x,y,z) = zk across the
sphere x*+y? + 7%= a2

Use divergence theorem to find the outward flux of the vector field F(x,y,z)=2xi+3yj+z*k
State stokes theorem

~3% s a solution of y”+y’-6y = 0

Verify thaty =e
Find the integrating factor of y’-y = e?¥

Verify whether the equation xydx+(2x2+3y?-20)dy=0 is exact or not.

Using Green’s theorem evaluate [ 4xydx + 2xydy where C is the rectangle bounded by
x=-2,x=4,y=1,y=2.

Solve y”’-5y'+6y =0

State the recurrence relation for gamma function

Prove that the force field F=ie?+j xe?¥ is conservative in the entire xy-plane

State Guass’s law for inverse square field

What is the outward flux of the vector field F = xi+yj+zk , across any unit cube.
4 MARKS

Find the eigen values and eigen vectors of the matrices 421 g] , [3

Find the eigen values and eigen vectors of the matrices (i)[g g ; [; 42}]

1 1 3
Find the inverse of the matrix | 1 3 =3
-2 -4 -4

Find x,y,z and w given that 3 [JZC 3; = [—xl Z?A/] . fw x -; y].
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1/3 -2/3 2/3
Show that the matrix [2/3 —-1/3 —2/3] is orthogonal.
2/3 —2/3 1/3

1 1 3
Find the eigen values and eigen vectors of the matrix [1 5 1].
31 1

Verify Cayley- Hamilton theorem for the matrix A = B ;L] and find its inverse.
01 1 1 1)
1 01 1 1
Evaluate the determinantD=|1 1 0 1 1
1 1 1 0 1
1 1 1 1 0
. . . . 1 -2
Find the eigen values and eigen vectors of the matrix A=[_5 4 ]
1 -1 1
Find the characteristic equation of the matrix A=|4 1  0]. Hence find A™.
8 1 1
If A=| €05 Sma], find A% and hence find A".
—sina  cosa
Using Cramer’s rule solve the set of equations:
2x+3y =3
x—2y=5

Write and row reduce the augmented matrix for the equations:

X—y+4z=5
2x—3y+8z=4
x—2y+4z=09.

4 6 6
Using Cayley Hamilton theorem evaluate A%, given A=[ 1 3 2 ]
-1 -4 -3
Find the number of solutions of the following system of equations 2x+6y+11=0, 6x+20y-

6z+3=0, 6y-18z+1=0.

Find the divergence and curl of the vector field F(x,y,z) = x?yi+2y3zj+3zk
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Evaluate the surface integral ffa x2dS over the sphere x?+y*+z2 =1

Evaluate the surface integral ffa y22z2dS where g is the part of the cone z = \/x? + y? that
lies between the planesz=1andz=2

Evaluate the line integral | = gﬁ xdy , where C is the circle in the xy plane defined by x*+y? =

C
a?,z=0

Use a line integral to find the area enclosed by the ellipse X2/ a% + y*/b%*=1

Evaluate fC (3x? + y?)dx + 2xy dy along the circular arc C given by x = cost, y = sint (0<
t<m/2)

Find the workdone by the force F = xi + 2yj , when it moves a particle on the curve 2y = x?
from (0,0) to (1,1)

Use divergence theorem to evaluate [[ F.n ds where F = (x*-yz)i+(y?*-xz)j+(z>-yz)k taken over
the region bounded by x=0,x=a,y=0,y=b,z=0,z=c

Use green’s theorem to evaluate [ x%ydx + xdy where Cis the triangle with vertices (0,0),
(1,0) and (1,2)

Show that 1“(%) =m

ay . 3
Solve X2 HY=Xy
r(p)r
Show that B(p,q)= 1"](:—+g;)
Show that f(m,n) = B(n,m)

Verify Green’s theorem for [(xy +y?)dx + x>dy where Cis closed,the curve consisting of
the line y=x and the parabola y=x?

Prove curl (pF) = ¢ curl(F) +Ve X F

Find the work done by the conservative field F(x,y) = e”i+xe”j on a particle that move
from (1,0) to (-1,0) along a semicircular path.

Apply Green’s theorem to evaluate [, (2x* —y*)dx + (x* + y*)dy where Cis the
boundary of the area enclosed by the x-axis and the upper half of the circle x2+y? = a?

d . .
Solve 1+yx£+x2 = 0 using variable separable method.

Find the general and singular solutions of y = px+a/p

Solve 1+yx2—;+x2 =0

Solve (y”+2y’+3)?=0

Find the orthogonal trajectories of the family of co-axial circles x*+y*+2Ax + ¢ = 0 where A
is the parameter

Solve y = 2px-p3

2
. Using the method of variation of parameters solve % + 4y = tan 2x
80.

Solve [ x tan( % )-y sec?( i—/) Jdx - x sec?( i—/)dy =0



15 MARKS
81. Verify Stoke’s theorem for the vector field F(x,y,z)=2zi+3xj+5yk, taking the surface o to be
the portion of the paraboloid Z= 4 - x2-y? for which z20 upward orientation and C to be the
positively oriented circle x2+y? = 4 that forms the boundary of o in the xy plane.
82. (a) Find the area of the surface extending upward from the circle x*+y? = 1 in the xy-plane to
the parabolic cylinder z = 1-x?
(b) Suppose that a semicircular wire has the equation y=m and that the mass density is
6(x,y) = 15-y.The density of the wire decreases linearly with respect to y to a value of 10 units
at the top(y=5).Find the mass of the wire.

83. (a) Evaluate the surface integral ffa xz dS where o is the part of the plane x+y+z = 1 that
lies in the first octant

(b)Suppose that a curved lamina g with constant density 6 (x, y, z) = &, is the portion of the

paraboloid z = x>+y? below the plane z = 1.Find the mass of the lamina

84. (a) Evaluate [[ F.n ds where F =4xi-2y%+z%k taken over the cylindrical region bounded by
x%+y? =4,2=0,2=3

(b) Verify green’s theorem for f(x,y) = y>-7y, g(x,y) = 2xy + 2x and C is the circle x?+y? = 1

1 1 3
85. Find the matrix P which transforms the matrix A=[1 5 1] to the diagonal form. Hence
31 1
calculate A®.
86. (a) Find for what values of a and b, the equations
xX+y+z=6
x+2y+3z=10
x + 2y + az = b have
(i) No solution
(ii) a unique solution
(iii) more than one solution

(b) Find the values of k for which the equations

3x+y—kz=0

4x—-2y—3z=0

2kx + 4y + kz = 0 may possess non-trivial solution.
2 0 1

0 2 0‘.

1 0 2

2 3 -1 -1

1 -1 -2 -4

87. Diagonalize the symmetric matrix A=

88. Reduce the matxix A= to normal form and hence find the rank.

3 1 3 =2
6 3 0 -7
1 -4 2
89. Find the eigen values and eigen vectors of the matrix M=|—4 1 —2].
2 =2 =2

90. Investigate the value of 4 and u so that the equations 2x + 3y + 5y =9,7x + 3y — 2z =
8,2x + 3y + Az = p have
(a) No solution  (b) a unique solution (c) an infinite number of solutions.



91. (a) Find the value of a and b for which the equations

x+ay+z=3
x+2y+2z=>
x+5y+3z=9

Is (i) consistent and have unique solution
(ii) is inconsistent
(iii) is consistent and have infinitely many solutions

(b) Find the value of k for which
Bk—8)x+3y+3z=0
3x+ (B3k—-8)+3z=0
3x+3y+@Bk—8)=0
have a non-trivial solution.
AY L AA dy _x+2y-3
92. (a) Solve x4y =Xy (b) Solve iy
@y Sy, -x
93. Solve Tz + de +y=e
94. Show that the equation (2xy+y - tan y )dx + ( x>- x tan?y +sec 2y+2) dy = 0 is exact and hence
solve it.

d?y dy
- ARl - —_\ =
95. Solve (1 x)dx2 3x y=1
96. (a)Find the orthogonal trajectory of the cardiods r = a(1-cos8)
(b)Solve (D-2)%y = 8(e?* + sin2x + x?)
97. (a)Solve (3y+2x+4)dx — (4x+6y+5)dy = 0
(b) Solve (xy3+y)dx + 2 (x2y?+x+y*)dy =0
2
98. Use the variation of parameters method to solve % +y = cosec x subject to the boundary
conditions y(0) = y(/2) =0
2
99. Solve by the method of undetermined coefficients % -y =e3¥*cos2x - e?*sin3x

d?y
dx?

(b) Solve (y-x) %+2x+3y=0

v . x
100. (a) Solve de+y-e




