VTM NSS COLLEGE DHANUVACHAPURAM DEPARTMENT OF MATHEMATICS QUESTION BANK

4TH SEMESTER MATHEMATICS CORE

MM1441:Elementary Number Theory Calculus II (2018 onwards)

[2 marks questions]

- 1. Prove that no prime of the form 4n+3 can be expressed as the sum of two squares
- 2. Determine whether 1928388 is divisible by 11
- 3. Determine whether 73215 is divisible by 9
- 4. Solve the congruence $12x \equiv 48 \pmod{18}$
- 5. Solve the congruence $12x \equiv 6 \pmod{7}$
- 6. Prove that if $a \equiv b \pmod{m}$ then $a^n \equiv b^n \pmod{m}$ for any positive integer n
- 7. Prove that the congruence relation is symmetric
- 8. State Euler's formula
- 9. State Fubini's theorem
- 10. Compute the least residue of $2^{340} \pmod{341}$
- 11. Compute the least residue x such that $x^2 \equiv 1 \pmod{8}$
- 12. Using inverse find the incongruent solutions of the linear congruence $5x \equiv 3 \pmod{6}$
- 13. Determine whether N=16,151,613,924 is a square.

14. Evaluate
$$\int_{-12}^{0.6} dx dy$$

15. Evaluate
$$\int_{-12}^{3.4} \int dx dy$$

16. Evaluate
$$\int_{42}^{3.4} 40 - 2xy dy dx$$

17. Evaluate
$$\int_{12}^{3.4} 40 - 2xy dy dx$$

18. Evaluate
$$\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} (x^2 + y^2)^{\frac{3}{2}} dy dx$$

19. Evaluate
$$\int_{11}^{a.b} \frac{1}{xy} dx dy$$

20. Evaluate
$$\int_{-100}^{2.3.2} \int 12xy^2 z^3 dz dy dx$$

21. Evaluate
$$\int_{R} \int y^2 x dA$$
 over the rectangle R= {(x,y):-3 \le x \le 2, 0 \le y \le 1}
22. Find $\iint_{R} y x dx dy$ where R is the triangular region with vertices (0,0),(2,0),(0,1).

- 23. Use a double integral to find the area of the region R enclosed between the parabola $y = \frac{x^2}{2}$ and the line y=2x
- 24. Find the volume of the solid enclosed by the surface $z = \frac{x}{y}$ and the rectangle $0 \le x \le 4$ and $0 \le y \le e^2$ in the xy-plane.
- 25. Find the surface area of the portion of the surface $z=\sqrt{4-x^2}$ that lies above the rectangle R in the xy-plane where the coordinates satisfy $0 \le x \le 1$ and $0 \le y \le 4$
- 26. Write the converting formula for three dimensional cartesian to spherical and to cylindrical coordinates.
- 27. Explain Jacobian of transformation in 2 variables.
- 28. Find the Jacobian $\frac{\partial(x,y)}{\partial(r,\theta)}$ were $x = r\cos\theta$, $y = r\sin\theta$
- 29. Use a polar double integral to find the area enclosed by the three petalled rose $r = sin 3\theta$
- 30. Find the divergence and curl of the vector field $F(x,y,z) = x^2 y i + 2y^3 z j + 3z k$
- 31. Find the divergence and curl of the vector field $F(x,y,z) = x^2 i + y^2 j + z^2 k$
- 32. Distinguish between del operator and Laplacian operator.
- 33. Evaluate the line integral $\int_{c} xy + z^{3} dS$ from (1,0,0) to (-1,0, π) along the helix C that is represented by the parametric equation x = cost, y = sint, z = t, $o \le t \le \pi$
- 34. Evaluate $\int_{C} 2xydx + (x^2 + y^2)dy$ along the circular arc C given by x=cos t, y = sin t ($0 \le t \le \pi/2$)
- 35. Evaluate $\int_{C} F. dr$, where F(x,y)= cos x i + sin x j and C is the oriented curve C: r(t)=

 $\frac{-\pi}{2}i + tj, \ 1 \le t \le 2$

- 36. State Gauss's Law for inverse square fields
- 37. State Green's Theorem
- 38. Sketch the vector field F(x, y) = -yi + xj
- 39. Show that the vector field $F(x,y)=(ye^{xy}-1)i + (xe^{xy})j$ is conservative. Also find the potential function $\phi(x, y)$.
- 40. Find the gradient field of $\phi(x, y) = 2x^2 + y$

[4 marks questions]

- 41. (a) If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ then prove that $a \cdot c \equiv b d \pmod{m}$ (b) If $a \equiv b \pmod{m}$ and c is any integer, then prove that $a + c \equiv b + c \pmod{m}$
- 42. Using the Pollard Rho method, factor the integer 3893
- 43. Using Pollard p-1 method, find the non trivial factor of n= 2813
- 44. Using Pollard rho method, with $x_0 = 2$ and $f(x) = x^2 + 1$, find the canonical decomposition of 3893.
- 45. Solve the linear system $x \equiv 1 \pmod{3}$

$$x\equiv 3(mod \ 4)$$

$$x\equiv 4(mod \ 7)$$

$$x\equiv 7(mod\ 11)$$

46. State and prove Wilson's Theorem

47. State and prove Fermat's Little theorem

- 48. Prove: a positive integer a is self invertible modulo p iff $a \equiv \pm 1 \pmod{p}$
- 49. Prove that no integer of the form 8n+7 can be expressed as a sum of three squares.
- 50. Find the remainder when 18! is divided by 23.
- 51. Find the remainder when 16^{53} is divided by 7.

52. Evaluate
$$\int_{0}^{2} \int_{\frac{y}{z}}^{1} e^{x^2} dx dy$$

53. Change the order of integration and hence evaluate $\int_{0}^{2} \int_{0}^{1} cos(x^{2}) dx dy$

- 54. Evaluate $\int_{0}^{a} \int_{0}^{a} \int_{0}^{x} y + xz + yz \, dx \, dy \, dz$ $1a \, 1 \, 1-x$
- 55. Evaluate $\int_{0} \int_{y^2} \int_{0} x dz dy dx$

56. Find the Jacobian $\frac{\partial(x,y,z)}{\partial(u,v,w)}$ were u=xy, v=y, w= x-z 57. Find the Jacobian $\frac{\partial(x,y,z)}{\partial(\rho,\phi,\theta)}$ for the spherical coordinates

- 58. Find the surface area of that portion of the paraboloid $z=x^2 + y^2$ below the plane z=1.
- 59. Find by double integration the area between the parabolas $y=4x-x^2$ and the line y=x
- 60. Use cylindrical coordinates to evaluate $\int_{-3}^{3} \int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} \int_{0}^{9-x^2-y^2} x^2 dz dy dx$
- 61. Use cylindrical coordinates to find the volume of the solid enclosed by the paraboloid $z = x^2 + y^2$ and the plane z = 16.
- 62. Evaluate the triple integral $\iint_{G} \int 13xy^2 z^3 dv$ over the rectangular box G defined by the inequalities $-1 \le x \le 2, 0 \le y \le 3, 0 \le z \le 2$
- 63. Use triple integral to find the volume of the solid in the first octant bounded by the coordinate planes and the plane 3x+6y+4z=12.
- 64. Use triple integral to find the volume of the solid bounded by the surface $y = x^2$ and the planes y+z=4 and z = 0.
- 65. Evaluate $\iint_{R} \frac{x-y}{x+y} dA$ where R is the region enclosed by x y = 0, x y = 1, x + y = 1, x + y = 3
- 66. Evaluate the surface integral $\iint_{\sigma} x^2 dS$ over the sphere $x^2 + y^2 + z^2 = 1$

- 67. Evaluate $\int_{C} 2xydx + (x^2 + y^2)dy$ along the circular arc C given by $x = cost, y = sint, 0 \le t \le \pi/2$.
- 68. Find the work done by the force field F on a particle that moves along the curve F = xy i + x^{3} ; C: x= y^{2} from (0, 0) to (1, 1).
- 69. Find the work done by the force field $F(x,y) = (e^x y^3)i + (\cos y + x^3)j$ on a particle that travels once around the unit circle $x^2 + y^2 = 1$ in the counterclockwise direction.
- 70. Use the Divergence theorem to find the outward flux of the vector field $F(x,y,z)= 2x i + 3y i + z^2k$ across the unit cube.
- 71. Using the parametrization evaluate the line integral $\int_{C} (1 + xy^{2}) ds \ ; \ C: r(t) = (1 t)i + (2 2t)j, \ 0 \le t \le 1$
- 72. Find

for

- $F(x, y) = (e^{y} + ye^{x})i + (xe^{y} + e^{x})j;$ C: $r(t) = sin(\pi t/2)i + lnt j;$ $1 \le t \le 2.$ 73. Find ∇ .(FXG) if F(x,y,z)=2xi+j+5yk and G(x,y,z)=xi+yj-zk
- 74. Find $\nabla(\frac{x-y}{x+y})$
- 75. Show that the integral $\int yz dx + xz^2 dy + yx dz$ is not independent of path.
- 76. Use Green's theorem to evaluate $\int_{C} x^2 y dx + x dy$ along the triangular path (0,0),(1,0),(1,2).

77. Use Green's theorem to evaluate $\int_{C} (x^2 - 3y)dx + 3xdy$ along the circle $x^2 + y^2 = 4$

[15 marks questions]

- 78. (a) State Fermat's little Theorem and use it to find the remainder when 24¹⁹⁴⁷ is divided by 17
 - (b) Using Chinese Remainder Theorem , solve the linear system of congruence
 - $x \equiv 1 \pmod{3}, \ x \equiv 2 \pmod{5}, \ x \equiv 3 \pmod{7}$
- 79. (a) State and solve Mahavira's puzzle.
 - (b) Find the remainder when 1!+2!+3!+.....+100! Is divided by 15
- 80. (a) State and prove Wilson's theorem
 - (b) State and prove Chinese Remainder theorem
- 81. Evaluate the integral by reversing the order of integration: $\int_{0}^{2} \int_{0}^{\frac{x}{2}} e^{x} e^{y} dy dx ; \int_{0}^{\frac{\pi}{2}} \int_{y}^{\frac{\pi}{2}} \frac{\sin x}{x} dx dy$

82. Find the area of the region bounded by $y = 2x^3$, 2x + y = 4 and the x axis.

83. Convert to spherical coordinates and evaluate $\int_{0}^{1\sqrt{1-x^2}\sqrt{1-x^2-y^2}} \int_{0}^{1} \frac{1}{1+x^2+y^2+z^2} dz dy dx$

- 84. (a) Find the volume of the solid enclosed between the paraboloids z= $5x^{2} + 5y^{2}$ and $z = 6 - 7x^{2} - y^{2}$
 - (b) Use spherical coordinates to find the volume of the solid G bounded above by the

sphere $x^2 + y^2 + z^2 = 1$ and below the cone $z = \sqrt{x^2 + y^2}$

- 85. (a) Find the surface area of that portion of the surface $z = \sqrt{4 x^2}$ that lies above the rectangle R in the xy-plane whose coordinate satisfy $0 \le x \le 1, 0 \le y \le 4$
 - Evaluate $\iint_{R} e^{xy} dA$ where R is the region enclosed by the lines (b) $y = \frac{x}{2}$ and y = x and the hyperbolas $y = \frac{2}{x}$ and $y = \frac{2}{x}$
- 86. (a) Using the Triple integral find the volume of the solid with the cylinder $x^2 + y^2 = 9$ and between the planes z=1 and x+z=5

$$\int_{-\frac{1}{2}}^{-x^{2}} \sqrt{4-x^{2}-y^{2}} z^{2} \sqrt{x^{2}+y^{2}+z^{2}} dz dy dx$$

- (b) Use spherical coordinates to evaluate $\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \sqrt{4-x^2}$ Suppose that a semi circular we $y = \sqrt{25 x^2}$ and $y = \sqrt{25 x^2}$ 87. Suppose wire has the equation $y = \sqrt{25 - x^2}$ and that its mass density is $\delta(x, y) = 15 - y$. Find the mass of the wire.
- 88. Find the volume of the region G enclosed by the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$
- 89. Find the centroid of the solid G bounded below by the cone $z = \sqrt{x^2 + y^2}$ and above by the sphere $x^2 + y^2 + z^2 = 9$
- 90. Evaluate the surface integral $\iint_{R} xzdS$ where σ is the part of the plane x+y+z=1 that lies in the first octant.
- 91. State Divergence theorem and verify it for F(x,y,z) = xy i + yz j + xz k, σ is the surface of the cube bounded by the planes x=0, x=2, y=0, y=2, z=0, z=2
- 92. (a)State Divergence theorem and verify it for the field F(x,y,z) = x i + y j + z k, over the sphere $x^{2} + y^{2} + z^{2} = a^{2}$

(b) Suppose that a curved lamina σ with constant density $\delta(x, y, z) = \delta_0$ is the portion of the paraboloid $z = x^2 + y^2$ below the plane z=1. Find the mass of the lamina.

- 93. State Stoke's theorem and verify it for $F(x,y,z) = x^2i + y^2j + z^2k$ and σ is the portion of the cone $z = \sqrt{x^2 + y^2}$ below the plane z = 1
- 94. Verify Stokes theorem for the vector field F(x, y, z) = 2zi + 3xj + 5yk taking σ to be the portion of the paraboloid $z = 4 - x^2 - y^2$ for which $z \ge 0$ with upward orientation and C

to be the positively oriented circle $x^2 + y^2 = 4$ that forms the boundary of σ in the xy-plane.

- 95. Show that the vector field $F(x,y)=2xy^{3}i + (1 + 3x^{2}y^{2})j$ is conservative. Also find the potential function $\phi(x, y)$.
- 96. Given the vector field F = yi xj + zk, verify Stokes Theorem for the hemispherical surface $x^{2} + y^{2} + z^{2} = a^{2}$, $z \ge 0$.
- 97. $F = 2xzi + 2yz^2j + (x^2 + 2y^2z 1)k$. Show that F is conservative vector field and hence find ϕ .
- 98. Verify Green's theorem for $\oint_C e^y dx + y e^x dy$ where(1) C:circle $x^2 + y^2 = 1$ (2)Cis the boundary of the region

enclosed by $y = x^2$ and $x = y^2$

- 99. Find the flux of F(x, y, z) = xi + yj + 2zk through the portion of the paraboloid $z = 4 - x^2 - y^2$ that is on or above the xy-plane with upward orientation.
- $\iint curlF.n\,ds$ 100. Use Stoke's theorem to evaluate where F(x, y, z) = (z - y)i + (x + z)j - (x + y)k and σ is the portion of the paraboloid $z = 2 - x^2 - y^2$ on or above the plane z=1 with upward orientation.