P - 7724

Reg. No. :

Name :

First Semester B.Sc. Degree Examination, March 2023

First Degree Programme Under CBCSS

Mathematics

Complementary Course I for Chemistry and Polymer Chemistry

MM 1131.2 : MATHEMATICS I – CALCULUS WITH APPLICATIONS IN CHEMISTRY I

(2018-2020 Admission)

Time : 3 Hours

Max. Marks: 80

SECTION - A

Answer all the questions. Each question carries 1 mark.

- 1. Find the derivative of $f(x) = x^3 \sin x$.
- 2. Find $\frac{dy}{dx}$ if $y = \ln(a^x + a^{-x})$.
- 3. Multiply the complex numbers 1+2i and 3-4i.
- 4. Define $\sinh x$.
- 5. By De Moivre's theorem, $(\cos\theta + i \sin\theta)' = ...$
- 6. Define the scalar product of two vectors.
- 7. Identify the surface $|\vec{r}| = k$.

- 8. Find the unit vector in the direction of the vector $\vec{i} + \vec{j}$.
- 9. Evaluate the integral $I = \int \ln x dx$.
- 10. Evaluate $l = \int \frac{1}{\sqrt{1-x^2}} dx$.

(10 × 1 = 10 Marks)

SECTION – B

Answer any eight questions. Each question carries 2 marks.

- 11. Verify Rolles's Theorem for the function $f(x) = \sin x$ on $[0, 2\pi]$
- 12. Find $\frac{dw}{dt}$, if $w = \tan x$ and $x = 4t^3 + t$.
- 13. Using mean value theorem determine inequalities satisfied by sin x for suitable ranges of the real variable x.
- 14. Find the modulus and argument of the complex number z = 2 3i.
- 15. Find the complex conjugate of the complex number $z = w^{3y+2x}$, where w = x + 5i.
- 16. Express z in the form x + iy, when $z = \frac{3 2\vec{i}}{-1 + 4\vec{i}}$.
- 17. Find the area A of the parallelogram with sides $\vec{a} = \vec{i} + 2\vec{j} + 3\vec{k}$ and $b = 4\vec{i} + 5\vec{j} + 6\vec{k}$.
- 18. Find the direction of the line of intersection of the two planes x + 3y z = 5 and 2x 2y + 4z = 3.
- 19. Find the angle between the vectors $\vec{a} = \vec{i} + 2\vec{j} + 3\vec{k}$ and $b = 2\vec{i} + 3\vec{j} + 4\vec{k}$.
- 20. Evaluate the integral $I = \int_0^\infty \frac{x}{x^2 + a^{2^2}} dx$.

P - 7724

- 21. Find the mean value of the function $f(x) = x^2 1$ on $[0, \sqrt{3}]$.
- 22. Evaluate the integral $I = \int x^2 \sin x dx$.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - C

Answer any six questions. Each question carries 4 marks.

- 23. Find the magnitude of the radius of curvature at a point (x, y) on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$
- 24. Find the positions and nature of the stationary points of the function $f(x) = x^3 3x^2 + 3x$.
- 25. Express $\sin 3\theta$ in terms of powers of $\cos \theta$ and $\sin \theta$.
- 26. Solve the hyperbolic equation $\cosh x 5 \sinh x 5 = 0$.
- 27. Four non-coplanar points *A*, *B*, *C*, *D* are positioned such that the line *AD* is perpendicular to *BC* and *BD* is perpendicular to *AC*. Show that *CD* is perpendicular to *AB*.
- 28. A point *P* divides a line segment *AB* in the ratio 2:3. If the position vectors of the points *A* and *B* are \vec{a} and \vec{b} , respectively, find the position vector of the point *P*.
- 29. Find the surface area of a cone formed by rotating about the x-axis the line y = 2x between x = 0 and x = 5.
- 30. Evaluate $l = \int \frac{1}{x^2 + 4x + 7} dx$.
- 31. The equation in polar coordinates of an ellipse with semi-axes *a* and *b* is $\frac{1}{\rho^2} = \frac{\cos^2 \phi}{a^2} + \frac{\sin^2 \phi}{b^2}$. Find the area of the ellipse.

(6 × 4 = 24 Marks)

P – 7724

SECTION - D

Answer any two questions. Each question carries 15 marks.

32. (a) State and prove Mean Value theorem.

(b) Find
$$\frac{dy}{dx}$$
 if $x = \frac{t-2}{t+2}$ and $y = \frac{2t}{t+1}$

- 33. (a) Simplify the expression $z = i^{-2i}$ to a real quantity.
 - (b) Express $\cosh^{-1} x$ in terms of logarithms.
- 34. (a) Find the distance from the point \vec{P} with coordinates (1,2,3) to the plane that contains the points A, B and C having coordinates (0,1,0), (2,3,1) and (5, 7, 2).
 - (b) A line is given by $\vec{r} = \vec{a} + \lambda \vec{b}$, where $a = 5\vec{i} + 7\vec{j} + 9\vec{k}$ and $\vec{b} = 4\vec{i} + 5\vec{j} + 6\vec{k}$. Find the coordinates of the point \vec{P} at which the line intersects the plane x + 2y + 3z = 6.
- 35. (a) Find the volume of a cone enclosed by the surface formed by rotating about the x-axis the line y = 2x between x = 0 and x = 3.
 - (b) Find the length of the curve $y = x^{3/2}$ from x = 0 to x = 5.
 - (c) Evaluate $I = \int \frac{1}{x^3 + y}$

 $(2 \times 15 = 30 \text{ Marks})$