(Pages : 6)

Reg. No. :

Name :

Fourth Semester B.Sc. Degree Examination, August 2022

First Degree Programme under CBCSS

Mathematics

Complementary Course for Chemistry/Polymer Chemistry

MM 1431.2 : MATHEMATICS IV — DIFFERENTIAL EQUATIONS, VECTOR CALCULUS AND ABSTRACT ALGEBRA

(2019 Admission Onwards)

Time : 3 Hours

Max. Marks : 80

PART – A

All the first 10 question are compulsory. Each carry 1 mark:

- A generalisation of the homogeneous ODE is known as ______
- 2. What is the form of Bernoulli's equation?
- 3. Write the Clairaut's equation
- 4. Write the general linear recurrence relation formula.
- 5. Say true or false: A line integral is also known as a path integral.
- 6. The vector area of a surface S is _____
- 7. Let *V* is a small volume enclosing *P* and *S* is its bounding surface. If ϕ is a scalar field and *a* is a vector field then at any point *P*, $\nabla \times a =$ ______.

- Write the cancellation law in a group.
- The order of the identity of a group is ______
- 10. Say true or false: if groups \mathcal{G} and \mathcal{G}' are isomorphic, \mathcal{G} and \mathcal{G}'' are isomorphic, then \mathcal{G}' and \mathcal{G}'' are isomorphic.

 $(10 \times 1 = 10 \text{ Marks})$

PART – B

Answer any eight questions. These questions carry 2 marks each.

- 11. Solve $\frac{dy}{dx} + 2xy = 4x$.
- 12. Solve $\frac{dy}{dx} + x + xy$.
- 13. Find a particular integral of the equation $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + y = e^x$.
- 14. State Green's theorem in a plane.
- 15. Find a solution of $(x^2 + x)\frac{dy}{dx}\frac{d^2y}{dx^2} x^2y\frac{dy}{dx} x\left(\frac{dy}{dx}\right)^2 = 0$.
- 16. Solve $\frac{dy}{dx} = (x + y + 1)^2$.
- 17. Find the volume enclosed between a sphere of radius a centred on the origin and a circular cone of half-angle α with its vertex at the origin.

N - 7786

- 18. Reduce $\int_{C} \mathbf{a} \cdot d\mathbf{r}$ to a set of scalar integrals by writing the vector field **a** in terms of its Cartesian components as $\mathbf{a} = a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}$, where a_x , a_y , a_z are each (in general) functions of *x*, *y*, *z*.
- 19. Write the line integral for the total work done by a force *F* when it moves its point of application from a point *A* to a point *B* along a given curve *C*.
- 20. When do you say that a plane region R is simply connected?
- 21. Find an expression for the angular momentum of a solid body rotating with angular velocity ω about an axis through the origin.
- 22. Show that the inverse of any particular element of a group G is unique.
- 23. Define cyclic group.
- 24. Write three properties of the subgroups of a group \mathcal{G} .
- 25. Define an equivalence relation on a set S.
- 26. Let \mathcal{G} be a group and \mathcal{H} be a subgroup of \mathcal{G} . Prove that two cosets of \mathcal{H} are either disjoint or identical.

$(8 \times 2 = 16 \text{ Marks})$

PART – C

Answer any six questions. These questions carry 4 marks each.

27. Solve:
$$\frac{dy}{dx} = \frac{-2}{y} - \frac{3y}{2x}$$
.

28. Solve
$$\frac{dy}{dx} + \frac{y}{x} = 2x^3y^4$$
.

29. Solve $6y^2p^2 + 3xp - y = 0$.

30. Solve
$$4x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + (x^2 - 1)y = 0$$
.

- 31. Evaluate the line integral $I = \int_{c} (x y)^2 ds$, where C is the semicir'cle of radius a running from A = (a, 0) to B = (-a, 0) and for which $y \ge 0$.
- 32. Find the vector area of the surface of the hemisphere $x^2 + y^2 + z^2 = a^2$ with $z \ge 0$.
- 33. Use the divergence theorem to prove $\int_{V} \nabla \times b dV = \oint_{S} dS \times b$.
- 34. From Ampere's law, derive Maxwell's equation in the case where the currents are steady, i.e. $\nabla \times B \mu_0 J = 0$.
- 35. Let $\Phi: \mathcal{G} \to \mathcal{G}'$ be a homomorphism of \mathcal{G} into \mathcal{G}' then show that the set of elements \mathcal{H} in \mathcal{G}' that are images of the elements of \mathcal{G} forms a subgroup of \mathcal{G}' .
- 36. Show that the traces of equivalent matrices are equal.
- 37. Show that the field of all non-zero complex numbers that have unit modulus are of the form $e^{i\theta}$ where $0 \le \theta < 2\pi$, form a group under multiplication.
- 38. For the hydrogen molecule consists of two atoms H of hydrogen, what are different sets of operations rotations, reflections, and inversions.

 $(6 \times 4 = 24 \text{ Marks})$

Answer any two questions. These questions carry 15 marks each.

- 39. (a) Find the value of u_{16} if the series u_n satisfies $u_{n+1} + 4u_n + 3u_{n-1} = n$ for $n \ge 1$, with $u_0 = 1$ and $u_1 = -1$.
 - (b) Solve $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = 2e^{-x}$ subject to the boundary conditions y(0) = 2, y'(0) = 1.

40. (a) Solve
$$\frac{d^2y}{dx^2} + y = \operatorname{cosec} x$$
.

- (b) Use Green's functions to solve $\frac{d^2y}{dx^2} + y = f(x)$, subject to the one-point boundary conditions y(0) = y'(0) = 0.
- 41. Evaluate the line integral $I = \int_{C} \mathbf{a} \cdot d\mathbf{r}$, where $\mathbf{a} = (x + y)\mathbf{i} + (y x)\mathbf{j}$, along
 - (a) the parabola $y^2 = x$ from (1, 1) to (4, 2),
 - (b) the curve $x = 2u^2 + u + 1$, $y = 1 + u^2$ from (1,1) to (4,2),
 - (c) the line y = 1 from (1, 1) to (4, 1), followed by the line x = 4 from (4, 1) to (4, 2).

42. (a) Show that the area of a region R enclosed by a simple closed curve C is given by

 $A = \frac{1}{2} \oint_C (xdy - ydx) = \oint_C xdy = -\oint_C ydx$. Hence calculate the area of the ellipse $x = a\cos\varphi, y = b\sin\varphi$.

- (b) Show that the geometrical definition of grad leads to the usual expression for ∇_{ϕ} in Cartesian coordinates.
- 43. Determine the irreps contained in the representation of the group 3 m in the vector space spanned by the functions x^2 , y^2 , xy.
- 44. If n_{μ} is the dimension of the μ th irrep of a group G then show that $\sum_{\mu} n_{\mu}^2 = g$, where g is the order of the group.

 $(2 \times 15 = 30 \text{ Marks})$