Reg. No. :

Name :

Fourth Semester B.Sc. Degree Examination, August 2022

First Degree Programme under CBCSS

Mathematics

Complementary Course for Chemistry / Polymer Chemistry

MM 1431.2 : MATHEMATICS IV — DIFFERENTIAL EQUATIONS, VECTOR CALCULUS AND ABSTRACT ALGEBRA

(2018 Admission)

Time : 3 Hours

PART - A

All the first 10 question are compulsory. Each carry 1 mark:

- A generalisation of the homogeneous ODE is known as ______
- 2. What is the form of Bernoulli's equation?
- 3. Write the Clairaut's equation
- 4. Write the general linear recurrence relation formula.
- 5. Say true or false: A line integral is also known as a path integral.
- 6. The vector area of a surface S is _____
- 7. Let V is a small volume enclosing P and S is its bounding surface. If ϕ is a scalar field and a is a vector field then at any point P, $\nabla \times a =$ ______.

P.T.O.

Max. Marks: 80

- Write the cancellation law in a group.
- 9 The order of the identity of a group is ______
- 10. Say true or false: if groups \mathcal{G} and \mathcal{G}' are isomorphic, \mathcal{G} and \mathcal{G}'' are isomorphic, then \mathcal{G}' and \mathcal{G}'' are isomorphic.

 $(10 \times 1 = 10 \text{ Marks})$

PART – B

Answer any eight questions. These questions carry 2 marks each.

- 11. Solve $\frac{dy}{dx} + 2xy = 4x$.
- 12. Find a particular integral of the equation $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + y = e^x$.
- 13. Find a solution of $(x^2 + x) \frac{dy}{dx} \frac{d^2y}{dx^2} x^2 y \frac{dy}{dx} x \left(\frac{dy}{dx}\right)^2 = 0$.
- 14. Solve $\frac{dy}{dx} = (x + y = 1)^2$.
- 15. Find the volume enclosed between a sphere of radius a centred on the origin and a circular cone of half-angle α with its vertex at the origin.
- 16. Write the line integral for the total work done by a force *F* when it moves its point of application from a point *A* to a point *B* along a given curve *C*.
- 17. When do you say that a plane region R is simply connected?
- 18. Find an expression for the angular momentum of a solid body rotating with angular velocity ω about an axis through the origin.
- 19. Show that the inverse of any particular element of a group \mathcal{G} is unique.

- 20. Write three properties of the subgroups of a group \mathcal{G}_1
- 21. Define an equivalence relation on a set S.
- 22. Let \mathcal{G} be a group and \mathcal{H} be a subgroup of \mathcal{G} . Prove that two cosets of \mathcal{H} are either disjoint or identical.

(8 × 2 = 16 Marks)

PART - C

Answer any six questions. These questions carry 4 marks each.

- 23. Solve $\frac{dy}{dx} + \frac{y}{x} = 2x^3y^4$.
- 24. Solve $6y^2p^2 + 3xp y = 0$.

25. Solve
$$4x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + (x^2 - 1)y = 0$$
.

- 26. Evaluate the line integral $I = \int (x y)^2 ds$, where C is the semicir'cle of radius a running from A = (a, 0) to B = (-a, 0) and for which $y \ge 0$.
- 27. Find the vector area of the surface of the hemisphere $x^2 + y^2 + z^2 = a^2$ with $z \ge 0$.
- 28. From Ampere's law, derive Maxwell's equation in the case where the currents are steady, i.e. $\nabla \times B \mu_0 J = 0$.
- 29. Let $\Phi: \mathcal{G} \to \mathcal{G}'$ be a homomorphism of \mathcal{G} into \mathcal{G}' then show that the set of elements \mathcal{H} in \mathcal{G} that are images of the elements of \mathcal{G} forms a subgroup of \mathcal{G}' .
- 30. Show that the traces of equivalent matrices are equal
- 31. For the hydrogen molecule consists of two atoms H of hydrogen, what are different sets of operations rotations, reflections, and inversions.

 $(6 \times 4 = 24 \text{ Marks})$

PART – D

Answer any two questions. These questions carry 15 marks each.

- 32. (a) Find the value of u_{16} if the series u_n satisfies $u_{n+1} + 4u_n + 3u_{n-1} = n$ for $n \ge 1$, with $u_0 = 1$ and $u_1 = -1$.
 - (b) Solve $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = 2e^{-x}$ subject to the boundary conditions y(0) = 2, y'(0) = 1.

33. (a) Solve
$$\frac{d^2y}{dx^2} + y = \cos ec x$$
.

- (b) Use Green's functions to solve $\frac{d^2y}{dx^2} + y = f(x)$, subject to the one-point boundary conditions y(0) = y'(0) = 0.
- 34. (a) Show that the area of a region *R* enclosed by a simple closed curve *C* is given by $A = \frac{1}{2} \oint_C (xdy ydx) = \oint_C xdy = -\oint_C ydx$. Hence calculate the area of the ellipse $x = a \cos \varphi$, $y = b \sin \varphi$.
 - (b) Show that the geometrical definition of grad leads to the usual expression for $\nabla \varphi$ in Cartesian coordinates.
- 35. Determine the irreps contained in the representation of the group 3 m in the vector space spanned by the functions x^2 , y^2 , xy.

 $(2 \times 15 = 30 \text{ Marks})$

N - 7781