N - 7780

Reg. No. :

Name :

Fourth Semester B.Sc. Degree Examination, August 2022

First Degree Programme under CBCSS

Mathematics

Complementary Course for Chemistry/Polymer Chemistry

MM 1431.2 : MATHEMATICS IV (ABSTRACT ALGEBRA AND LINEAR TRANSFORMATIONS)

(2014-2017 Admission)

Time : 3 Hours

Max. Marks: 80

PART – I

Answer all questions. Each question carries 1 mark.

- 1. Write the identity element in the group $M_2(\mathbb{R})$ of all 2×2 matrices under matrix addition.
- 2. What is the inverse of 6 in the group \mathbb{Z}_{10} .
- 3. In \mathbb{Z}_7 , which element is not a generator?
- 4. Find the remainder when -49 is divided by 8 according to the division algorithm.
- 5. Compute the product (12) (5) in \mathbb{Z}_{23} .
- 6. Give a vector linearly dependent to

- 7. Give a linear transformation from \mathbb{R}^2 to \mathbb{R} .
- 8. Give a transformation from \mathbb{R} to \mathbb{R} , which is not linear.
- 9. Give an example of a dilation on \mathbb{R}^2 .
- 10. If T is a linear transformation, find T(0).

(10 × 1 = 10 Marks)

PART – II

Answer any eight questions. Each question carries 2 marks.

- 11. Is M_3 (\mathbb{R}) of all 3 × 3 matrices under matrix multiplication a group? Why?
- 12. Find all generators of \mathbb{Z}_6 .
- 13. Find the cyclic subgroup of \mathbb{Z}_{12} generated by 9.
- 14. Define a permutation and give one example.
- 15. Find the subgroups of \mathbb{Z}_5 .
- 16. What are the units in the ring of all integers $(\mathbb{Z}, +, .)$?
- 17. Show that the vectors $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ are linearly independent.
- 18. Find a standard matrix A for the transformation T(x) = 3x, for $x \in \mathbb{R}^2$.
- 19. If a set $S = \{v_1, ..., v_p\}$ in \mathbb{R}^n contains the zero vector, then show that the set S is linearly dependent.
- 20. Give an example of a one-to-one linear transformation from \mathbb{R}^2 to \mathbb{R}^2 .
- 21. Write $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$ as a linear combination of $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$.
- 22. Give the standard matrix for the transformation on \mathbb{R}^2 given by the reflection through the x_1 -axis.

 $(8 \times 2 = 16 \text{ Marks})$

PART - III

Answer any six questions. Each question carries 4 marks.

- 23. Give 4 different binary operations on the set $\{a, b\}$.
- Show that a group cannot have more than one identity element.
- 25. Show that the Klein 4 group V is not cyclic.
- 26. If R is a ring with identity 0, then show that 0a = a0 = 0 for all $a \in R$.
- 27. Write two proper subfields of the field of all real numbers $(\mathbb{R}, +, .)$.

28. Determine if the columns of $A = \begin{bmatrix} 0 & 1 & 4 \\ 1 & 2 & -1 \\ 5 & 8 & 0 \end{bmatrix}$ are linearly independent.

- 29. Determine if the vectors $\begin{bmatrix} 5\\0\\0\end{bmatrix} \begin{bmatrix} 7\\2\\-6\end{bmatrix} \begin{bmatrix} 9\\4\\-8\end{bmatrix}$ are linearly independent.
- 30. Let $A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$, and $T : \mathbb{R}^2 \to \mathbb{R}^2$ by T(x) = Ax. Find the images under T of $u = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$, $v = \begin{bmatrix} a \\ b \end{bmatrix}$, 5u and u + v.
- 31. Find the standard matrix for the rotation transformation on \mathbb{R}^2 .

 $(6 \times 4 = 24 \text{ Marks})$

Answer any two questions. Each question carries 15 marks.

- 32. (a) Let * be defined on Q^+ by $a^*b = \frac{ab}{2}$. Show that $(Q^+, *)$ is an abelian group.
 - (b) Show that the subset S of M_n(ℝ) of all invertible n×n matrices under matrix multiplication a group.
- 33. (a) Describe S₃ and write the group table.
 - (b) Write down the orders of each element of the group S3.

- 34. (a) Let $T(x_1, x_2) = (3x_1 + x_2, 5x_1 + 7x_2, x_1 + 3x_2)$. Show that T is a one-to-one linear transformation. Does T maps \mathbb{R}^2 onto \mathbb{R}^3 ?
 - (b) Show that if a set contains more vectors than there are entries in each vector, then the set is linearly dependent.

35. Let
$$A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -i & 7 \end{bmatrix}$$
, $u = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $b = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$, $c = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}$ and define $T : \mathbb{R}^2 \to \mathbb{R}^3$ by $T(x) = Ax$.

- (a) Find T(u)
- (b) Find an x in \mathbb{R}^2 such that T(x) = b.
- (c) Is there more than one x such that T(x) = b.
- (d) Determine if c is in the range of T.

 $(2 \times 15 = 30 \text{ Marks})$